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One-component charged systems as a limiting case of
quantal two-component mixtures—a bifurcation procedure
for a many-body system
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University of Cyprus, Department of Natural Sciences, PO Box 537, 1678 Nicosia, Cyprus

Received 10 June 1996, in final form 10 September 1996

Abstract. The standard model problem of a three-dimensional fully interacting electron gas in
a uniform compensating background is shown to result from a procedure starting at the operator
level with a fully quantum mechanicaltwo-componentsystem of electrons and countercharge
(e.g. nuclei), and following a dual limiting process involving the division of charge and the
scaling of mass. The bifurcation method provides insight into other aspects of the corresponding
many-body problem, two examples of which are given.

1. Introduction

In the non-relativistic limit the Hamiltonian for an element of atomic numberZa consisting
of N nuclei (α = n) andZaN electrons (α = e) can be written

Ĥ =
∑

α

(
T̂α + 1

2

∑
α′

∫
dr

∫
dr′ZαZα′vc(r − r′)ρ̂(2)

αα′(r, r′)
)

(1)

whereZα = Za for α = n, andZα = −1 for α = e. In 1 vc(r − r′) = e2/|r − r′| is the
basic Coulomb interaction;̂Tα = ∑Nα

i=1(−h̄2/2mα)∇2
αi are the kinetic contributions. The

quantity ρ̂
(2)
αα′ is the the two-particle density operator defined by

ρ̂
(2)
αα′(r, r′) = ρ̂(1)

α (r)ρ̂
(1)
α′ (r′) − δαα′δ(r − r′)ρ̂(1)

α (r) (2)

where

ρ̂(1)
α (r) =

Nα∑
i=1

δ(r − riα) (3)

is the standard one-particle density operator for instantaneous coordinates{riα}. The
simplicity and symmetry of (1) leads to exact scaling results for the ground state energy
and the structure functions [1] which will be used in the following. According to the choice
of external conditions (the choice of volumeV containing a canonical, neutral, ensemble)
the states of (1) usually divide into two distinct classes which in one-electron language we
would describe as localized-core orbitals (close to the atomic equivalents), and itinerant
valence states leading for crystalline arrangements to Bloch levels and a corresponding
band structure. A first approximation to the latter is often taken to be the one-electron
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structure taken from a many-body problem in which the core structure, the combination
of nuclear charge and core-orbital charge, is replaced by a uniform background, and all
further consequences of the fermionic character of the localized electrons eliminated. This
leads to the standard many-body problem for a fixed number of interacting electrons in a
neutralizing background. We show here for a fully two-component arrangement how this
problem can be arrived at from the level of the Hamiltonian (1) by a systematic procedure
involving the division of charge and the scaling of mass.

2. A bifurcation model

SettingZa = Z in what follows, start again with a neutral system ofNZ negative point
fermions (electrons) each of massme and charge−e, andN positive point counterions (also
assumed to be fermions) each of massM and chargeZe (e > 0). The fully dynamical
problem for this system is described by the two-component Hamiltonian (1) with Coulomb
interactions. Proceed now with the following formal device, which is justified by the
universal applicability of quantum mechanics to physical systems with widely differing
masses and charges. First, split every counterion into two point particles each of charge
Ze/2 but at the same timeincreasethe mass of each new particle toσM, the coefficient
σ being determined later (σ > 1, as will be seen in equation (9) below). We may take
the counterions as of either fermionic or bosonic character, although it is important that the
symmetry class is preserved under division. If we iterate this procedure to theνth step, the
transformation of the counterion subsystem can be described by

(N, M, Ze) → (2νN, σ νM, Ze/2ν).

Now theNZ electrons together with the 2νN positive particles consists of a new but still
neutral canonical system described by the Hamiltonian

Ĥ =
NZ∑
i=1

p2
i,e

2me

+ 1

2

∑
i

∑
j 6=i

e2

|ri,e − rj,e| +
2νN∑
i=1

p2
i,p

2σ νM
+ 1

2

2νN∑
i

2νN∑
j 6=i

(Ze/2ν)2

|ri,p − rj,p|

−
NZ∑
i=1

2νN∑
j=1

Ze2/2ν

|ri,e − rj,p| . (4)

It clearly continues to describe a fully dynamical two-component system,
and it will also therefore be constrained by identical formal scaling relations
([NZ, me, −e], [2νN, σ νM, Ze/2ν ]). We will now show that in the limitν → ∞ we
recover just the intuitively anticipated problem of an interacting electron gas in a uniform
static background (i.e., the first two terms of (4) plus background terms), provided only
that we chooseσ appropriately (as noted according to equation (9) below). To do this we
observe the following:

From the cusp condition [2, 3, 4] (but now applied for two positive particles of charge
Ze/2ν and massσνM each) we have

∂ραα(r)

∂r

∣∣∣∣
r=0

= 2ραα(r = 0)

a∗ (5)

whereραα(r) is the sphericalized average of the two-particle density operator (equation (2))
for the positive particles (α = n). In (5) a∗ = h̄2

(σ νM/2)(Ze/2ν )2 is the effective Bohr radius for
these particles. Accordingly

∂ρnn(r)

∂r

∣∣∣∣
r=0

∝
(σ

4

)ν
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and it is clear therefore that if we chooseσ < 4 we must have

lim
ν→∞

∂ρnn(r)

∂r

∣∣∣∣
r=0

= 0.

This means that in theν → ∞ limit the cusps rigorously vanish, and in any physical states
of interest the density of the positive subsystem of the new particles must be uniform. An
immediate consequence is that no fluctuations for the positive subsystem exist in this limit,
and for this reason we can now replace operators with their averages. In particular, since
the one-particle density operator for the positive particles in theνth step (equation (3)) has
an average

〈ρ̂(1)
n (r)〉 = 2νρ(1)

n (r)

we have the result that in the limitν → ∞ we can replace the operator

lim
ν→∞

1

2ν
ρ̂(1)

n (r)

with its averageN/V . This is constant because as just shown above the one-particle density
of the positive subsystem in this limit will be uniform. Consider, then, the last two terms
of (4). First

1

2

2νN∑
i

2νN∑
j 6=i

(Ze/2ν)2

|ri,p − rj,p|
can be written as

lim
λ→0

1

2

(
Ze

2ν

)2 ∫ ∫
drdr′ρ̂(2)

nn (r, r′)
e−λ|r−r′|

|r − r′|
where the two- and one-particle density operators appearing are defined by (2) and (3) and,
according to the above result, in the limitν → ∞ this approaches

lim
λ→0

Z2

2
e2

∫ ∫
drdr′

N
V

N
V

e−λ|r−r ′|

|r − Er ′| = lim
λ→0

1

2
Z2e2 N2

V

4π

λ2
. (6)

Similarly the term

−
NZ∑
i=1

2νN∑
j=1

Ze2/2ν

|ri,e − rj,p|
can be written as

lim
λ→0

[
−Ze2

2ν

∫ ∫
drdr′ρ̂(1)

e (r)ρ̂(1)
n (r′)

e−λ|r−r′|

|r − r′|

]
and in the limitν → ∞ it becomes

lim
λ→0

[
−Ze2

NZ∑
i=1

∫
d3r

N

V

e−λ|r−ri |

|r − ri |

]
= lim

λ→0

[
−Z2e2 N2

V

4π

λ2

]
. (7)

Here λ is the standard convergence parameter for long-ranged interacting systems that is
ultimately taken to zero, but always in such a way as to keepλ−1 << V 1/3 in the approach
to the thermodynamic limit.

Lastly we have to deal with the kinetic energy term (the third term in (4)). Because,
as was shown above, for the limitν → ∞ the positive particle subsystem is in a state of
uniform density and also infinitely dense, and also because each particle has asymptotically a
vanishing value of charge, this subsystem in this limit can be considered as an ideal system.
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We are therefore confronted with an ideal Fermi system of density limν→∞(2νN)/V of
particles, each with mass limν→∞ σ νM. In this case the third term of (4) will contribute a
kinetic energy

Tp = me

Mσν

2.21

r2
s

Ryd (8)

per particle. However,V/(2νN) = 4
3πr3

s a3
0 so that r2

s ∝ 1/(22ν/3) or r2
s σ ν ∝ (σ/41/3)ν .

It immediately follows that if we chooseσ > 41/3 we must obtain a vanishing contribution
for the kinetic energy per particle in the limitν → ∞ for the positive subsystem. (Note
also that any residual kinetic term that may result from correlation energy for finiteν is
several orders of magnitude smaller than (8) and will also vanish in the limitν → ∞.) For
a countercharge of boson symmetry, the process of charge division must eventually lead to
a non-interacting system and its ground state energy must also approach zero.

We therefore obtain the result that the overall contribution of the positive component in
this limit of infinite steps and for any value ofσ in the range

41/3 < σ < 4 (9)

will be just the sum of (6) and (7), i.e.− 1
2Z2e2(N2/V )(4π/λ2), as is the contribution

of the positive background in the standard electron gas problem. In the thermodynamic
limit this contribution is cancelled by a corresponding electronic one-body term arising as
a consequence of charge neutrality, as is well known [5, 6]. Thus after the limit is taken
we arrive at the standard one-component Hamiltonian, that can be written as

Ĥ = T̂e + 1

2

∫
dr

∫
dr′vc(r − r′)

(
ρ̂(2)

ee (r, r′) − 2ρ0 ρ̂(1)
e (r) + ρ2

0

)
(10)

whereρ0 = ZN/V .
In the more general case of splitting each nucleus inton (rather than two) nuclei at

every step of the bifurcation process the bounds in equation (9) will simply read

n2/3 < σ < n2 (11)

the lower of which is associated with the fermionic character of the positive subsystem.
Its existence is traced to the requirement that at each step the mass is sufficient to ensure
that the limiting kinetic energy of the nuclei vanishes. The physics of the upper bound is
associated with the coulombic character of the interactions, and its existence is traced to
the necessity of providing a mass low enough that the limiting density of the system of the
nuclei is uniform.

3. Discussion

The above argument shows that by starting with a fully quantum mechanical two-component
system a well defined bifurcation procedure applied sequentially converts the formal two-
component Hamiltonian to the standard one-component electron gas Hamiltonian in the limit
of the procedure and in the thermodynamic limit. We observe that the bifurcation approach
may actually be of more general utility for it can provide further insight into other aspects
of a many-body charged system. This is demonstrated below in two different contexts: one
is related to an exchange driven paired phase of the interacting electron system, and the
other to the nontrivial question of the metal–insulator transition in the same problem.

First, the bifurcation procedure, when applied to a moderately dense phase of hydrogen
(H2) molecules (by division of theprotonic charge and scaling of the protonic mass) is
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expected to give in the limita paired electron phase[7] in a uniform background, the pairing
being stabilized mostly by exchange. To see this, let us consider the counterion–electron
cusp at every step of the bifurcation process, noting that for this problemZa = Z = 1. We
then have

∂ραe(r)

∂r

∣∣∣∣
r=0

= −2ραe(r = 0)

ã
(12)

as the analogue of (5), but now with an effective Bohr radius

ã = h̄2

m∗(ν)
(

Z
2ν

)
e2

and with 1/m∗(ν) = 1/me + 1/σ νM. Observe that in the limitν → ∞ the cusp vanishes
as 1/2ν for any value ofσ . Starting therefore with the usual Heitler–London combination
of atomic electronic wavefunctions, with proper cusps, we must obtain vanishing cusps
in the limit of the procedure. This is immediately consistent with the use of a Heitler–
London combination of Gaussian trial states proposed earlier [7] in a many-body treatment
of interacting electrons in a uniform background. This argument therefore gives further
support to the possibility of exchange driven pairing at intermediate densities. The ensuing
paired-electron phase is then seen as a manifestation of the standard exchange mediated
pairing in H2; it is seen to be a realization of the bifurcation process.

Second, the above procedure can be straightforwardly extended to incorporate inĤ the
presence of a gauge fieldA. This has been shown to be an additional important formal
device [8] which in this case is capable of addressing the physics of a possible metal–
insulator transition in an interacting electron system. The vanishing of the dependence of
the ground state energy onA signals the transition to an insulating state, a generalization of
an earlier criterion given by Kohn [9]. The simplest method that accounts for the presence
of A is the minimal substitution in the kinetic terms of (4) (namely, all the momenta are
shifted byeA/c). The only change in the above scaling procedure is then in the kinetic
energy term of the counterion system. In the limit of repeated bifurcation, equation (8) now
becomes

Tp = me

Mσν

(
2.21

r2
s

Ryd+ e2

2mec2
A2

)
(13)

and it is clear that the newA2 term will vanish in theν → ∞ limit, leaving the presence
of A only in the electron kinetic energy term. This turns the problem into one with
interacting electrons in a uniform background, but now in the presence of a gauge field. It
remains highly nontrivial, but it can be shown to possess a metal–insulator transition that
has been estimated earlier (through the use of a random-phase-approximation calculation
[8]) to occur at a density corresponding tors = 61.7. This argument therefore suggests
that the metal–insulator transition in this simplest realistic two-component system (the dual
fermionic problem originating with electron and protons whose fundamental transitions are
still a matter of debate [10]) is mapped by this bifurcation procedure into the well known
transition of the interacting electron liquid to the Wigner crystal.

As noted, the bifurcation method we introduce has been applied to fermionic nuclei.
We have considered here a three-dimensional system; the extension to two dimensions (or
to particles of fractional statistics) may require significant changes [11].
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